Cocaine is excreted in the urine primarily as benzoylecgonine in a short period of time. Benzoylecgonine has a biological half-life of 5 to 8 hours, which is much longer than that of cocaine (0.5 to 1.5 hours), and can be generally detected for 24 to 60 hours after cocaine use or exposure.

3,4-methylenedioxymethamphetamine (MDMA) is classified as both a stimulant and a hallucinogen. Like methamphetamine, adverse effects of 3,4-methylenedioxymethamphetamine use include jaw clenching, teeth grinding, dilated pupils, increased blood pressure and heart rate. Overdose of 3,4-methylenedioxymethamphetamine may cause heart failure or extreme heat stroke. 3,4-methylenedioxymethamphetamine is taken orally in tablets or capsules and is excreted in urine as parent compound metabolites including methylenedioxymamphetamine (MDA).

Methadone is a synthetic analgesic drug originally used for the treatment of narcotic addiction and pain management. The psychological effects induced by using methadone are analgesia, sedation, and respiratory depression. Overdose of methadone may cause coma or even death. Methadone is taken orally or intravenously and is metabolized in the liver and has a biological half-life of 15-60 hours.

Opiates, such as heroin, morphine, and codeine, are central nervous system (CNS) depressants. The use of opiates at high doses produces euphoria and release from anxiety. Physical dependence is apparent in users and leads to depressed coordination, disrupted decision making, decreased respiration, hypothermia and coma. Heroin is quickly metabolized to 6-acetylmorphine (6-AM), morphine, an morphine glucuronide. Codeine also partially metabolizes to morphine and morphine glucuronide. Thus, the presence of morphine glucuronide in the urine can indicate heroin, morphine, and/or codeine use.

Oxycodone is a semi-synthetic opioid with a structural similarity to codeine. It produces potent euphoria, analgesic and sedative effects, and has a dependence liability similar to morphine. Oxycodone is most often administered orally and is metabolized by demethylation to noroxycodone and oxymorphone followed by glucuronidation. The window of detection for oxycodone in urine is expected to be similar to that of other opioids such as morphine.

Phencyclidine, commonly known as “angel dust” and “crystal cyclone”, is an amphetamine-like substance that is typically used as an anesthetic agent and as a veterinary tranquilizer. The drug is abused by oral or nasal ingestion, smoking, or intravenous injection. It produces hallucinations, lethargy, disorientation, loss of coordination, trance-like ecstatic states, a sense of euphoria and visual distortions. It is well absorbed following all routes of administration. Unchanged PCE is excreted in urine in moderate amounts (10% of the dose).

Propoxyphene is a mildly effective narcotic analgesic that has been in clinical use since the 1950’s. It is less potent than codeine, and bears a close structural relationship to methadone. Propoxyphene is available in oral formulations either as the hydrochloride (or as the naproxylate salt, and is often dosed in combination with aspirin or acetaminophen. Overdosage with propoxyphene can result in stupor, coma, convulsions, respiratory depression, cardiac arrhythmias, hypotension, pulmonary edema and circulatory collapse. Propoxyphene is metabolized primarily via N-demethylation to norpropoxyphene. The amounts of metabolites excreted in the 20 hour urine following a 130 mg single oral dose of propoxyphene hydrochloride were: 1.1% propoxyphene, 13.2% norpropoxyphene and 0.7% dinorpropoxyphene.

Tetrahydrocannabinol (THC) is generally accepted to be the principle active component in marijuana. When ingested or smoked, it produces euphoric effects. Abusers exhibit central nervous system effects including altered mood and sensory perceptions, loss of coordination, impaired short term memory, anxiety, paranoia, delusions, confusion, hallucinations and increased heart rate. When marijuana is ingested, the drug is extensively metabolized by the liver, the primary metabolite of marijuana excreted in the urine is 11-nor-3-THC-9-carboxylic acid. The elimination of THC and metabolites in urine is highly dependent on frequency of drug use and the physiology of the user.

Tricyclic antidepressants (TCAs) have been prescribed for depression and compulsive disorders. Because of the possibility of causing serious cardiac complications, TCAs can be lethal if misused at high doses. TCAs are taken orally or sometimes by injection. TCAs are metabolized in the liver. TCAs and their metabolites are excreted in urine (mostly in the form of metabolites) for up to ten days.

The length of time following drug use of which a positive urine test result may occur is dependent upon several factors, including the frequency of drug use, amount of drug, the user’s metabolic rate, drug excretion rate, drug half-life, and the drug user’s age, weight, activity and diet.

ADULTERATION TESTS

Specimen validity/adulteration tests are not in vitro diagnostic assays. Therefore, information regarding these tests is not subject to FDA review.

Adulteration of urine samples may cause erroneous results in a drugs of abuse test by either interfering with the drug screening test and/or destroying the drugs in the urine. Dilution of urine with water is probably the simplest urine adulteration method. Bleach, vinegar, eye drops, sodium bicarbonate, sodium nitrite, Drano, soft drinks and hydrogen peroxide are examples of adulterants used to adulterate urine samples. It is important to insure the integrity of urine samples in drugs of abuse testing.

TEST PRINCIPLE

The Status Assure Drug Screen Cup is based on the principle of competitive immunchemo reaction between a chemically labeled drug (drug-protein conjugate) and the drug or drug metabolites which may be present in the urine sample for the limited antibody binding sites.
The test contains a nitrocellulose membrane strip pre-coated with drug-protein conjugate in the test region and a pad containing colored antibody-colloidal gold conjugate. During the test, the urine sample is allowed to migrate upward and rehydrate the antibody-colloidal gold conjugate. The mixture then migrates along the membrane chromatographically by the capillary action to the immobilized drug-protein band on the test region. When drug is absent in the urine, the colored antibody-colloidal gold conjugate and immobilized drug-protein bind specifically to form a visible line in the test region as the antibody complexes with the drug-protein. When drug is present in the urine, it will compete with drug-protein for the limited antibody binding sites. The line on the test region will become less intense with increasing drug concentration. When a sufficient concentration of drug is present in the urine, it will fill the limited antibody binding sites. This will prevent attachment of the colored antibody-colloidal gold conjugate to the drug-protein on the test region. Therefore, the presence of the line on the test region indicates a negative result for the drug and the absence of the test line on the test region indicates a positive result for the drug.

A visible line generated by a different antigen/antibody reaction is also present at the control region of the test strip. This line should always appear, regardless of the presence of drugs or metabolites in the urine sample. This means that a negative urine sample will produce both test line and control line, and a positive urine sample will generate only control line. The presence of control line serves as a built-in control, which demonstrates that the test is performed properly.

The Status Assure Drug Screen Cup with adulteration test is based on the color response of chemical indicators in the presence of adulterants. Creatinine (Cr), nitrite (Ni), pH, bleach/oxidant (Bl), and specific gravity (S.G) are tested to determine the integrity of urine samples.

Cr: Creatinine reacts with a creatinine indicator in an alkaline medium to form a purplish-brown color complex. The color intensity is directly proportional to the concentration of creatinine. A urine sample with a creatinine concentration of less than 20 mg/dL is indicative of adulteration.

Ni: Nitrite reacts with the reagent’s aromatic amine to form a diazonium salt which couples with an indicator to yield a pink-red/purple color complex. A urine sample containing nitrite at a level greater than 15 mg/dL is considered adulterated.

pH: The pH determination of urine sample is based on color change of indicator in an acidic or basic medium. Normal urine pH ranges from 4 to 9. A urine pH below 4 or above 9 indicates adulteration with acid or base to the sample.

Bl: Bleach or other oxidizing agents react with an oxidant indicator to form a color complex. Observation of a blue-green, brown, or orange color indicates adulteration with bleach or other oxidizing agents.

S.G: The specific gravity test is based on the pKa change of certain pretreated polyelectrolytes in relation to the ionic concentration. In the presence of an indicator, the colors changes from dark blue to blue-green in urine of low ionic concentration to green and yellow-green in urine of higher ionic concentration. A urine specific gravity below 1.005 or above 1.025 is considered abnormal.

REAGENTS & MATERIALS SUPPLIED

- 25 individually wrapped test devices. Each device consists of different test strips in a plastic test strip holder. The test strip contains a colloidal gold pad coated with antibody and rabbit antibody. It also contains a membrane coated with drug-protein conjugate in the test band and goat anti-rabbit antibody in the control band. For the device with adulteration test, an adulteration test strip is also included in each device.
- One instruction sheet
- Security seals (if applicable)
- Adulteration Color Chart (when applicable)

MATERIAL REQUIRED BUT NOT PROVIDED

- Timer
- Specimen collection container
- External positive and negative controls

WARNINGS AND PRECAUTIONS

- For professional in vitro diagnostic use only
- Urine specimens may be potentially infectious. Proper handling and disposal methods should be established.
- Avoid cross-contamination of urine samples by using a new specimen collection container for each urine sample.
- Test device should remain sealed until ready for use.
- Do not use the test kit after the expiration date.
- A positive test result does not always mean an individual has taken the drug illegally as the drug can be administered legally.
- Do not store and or expose reagent kits at temperature greater than 30°C. Do not freeze.

STORAGE

The Status Assure Drug Screen Cup should be stored at 2-30°C (36-86°F) in the original sealed pouch. Do not freeze. Do not store and or expose reagent kits at temperature greater than 30°C.

SPECIMEN COLLECTION AND HANDLING

Fresh urine does not require any special handling or pretreatment. A fresh urine sample should be collected in the container provided. Alternately, a clean, dry plastic or glass container may be used for specimen collection. If the specimen will not be tested after the specimen collection, the specimen may be refrigerated at 2-8°C up to 2 days or frozen at -20°C for a longer period of time. Specimens that have been refrigerated must be equilibrated to room temperature prior to testing. Specimens previously frozen must be thawed and mixed thoroughly prior to testing.

Note: Urine specimens and all materials coming in contact with them should be handled and disposed as if capable of transmitting infection. Avoid contact with skin by wearing gloves and proper laboratory attire.

ASSAY PROCEDURE FOR DRUG TEST

Preparation

1. If specimen, control, or test devices have been stored at refrigerated temperatures, allow them to warm to room temperature before testing.
2. Do not open test device pouch until ready to perform the test.

Testing

1. Remove lid test device from the sealed pouch and write donor name or ID on the cap in the section provided.
2. Secure test device to the filled specimen cup. IMPORTANT: Cup lid must be secured tightly by twisting the lid a quarter turn AFTER lid is snug. Place the cup on its side, (as shown in the illustration below) to activate testing.
3. Read the results of adulteration test by visually comparing the color of reagent pads to the corresponding blocks on the Color Chart at the time indicated.
4. Read results of test in 5 minutes. Do not interpret result after 10 minutes.
INTERPRETATION OF RESULTS

Negative (-): A colored line appears at the control region (C) and a colored line appears at a specific drug test region (T1, T2 for 2-drug strip and T for 1-drug strip). The appearance of a control line and test line indicates a negative test result for that particular test. The test lines may have varying intensity either weaker or stronger in color than that of the control line.

Positive (+): A colored line appears at the control region no colored line appears at a specific drug test region. The complete absence of a test line indicates a preliminary positive result for that particular drug. A preliminary positive result for a drug indicates that the concentration of that drug in the urine is at or above the cutoff level.

Invalid: No colored line appears in the control region. If the control line does not form, the test result is inconclusive and should be repeated.

QUALITY CONTROL

An internal procedural control is included in the test device. A line must form in the Control band region regardless of the presence or absence of drugs or metabolites. The presence of the line in the Control region indicates that sufficient sample volume has been used and that the reagents are migrating properly. If the line in the Control region does not form, the test is considered invalid and must be repeated.

To ensure proper kit performance, it is recommended that the Status Assure Drug Screen Cup devices be tested using external controls with each new lot of product and each new shipment. External controls are available from commercial sources. Additional testing may be necessary to comply with the requirements accrediting organizations and/or local, state, and/or federal regulators.

LIMITATIONS OF PROCEDURE

- The assay is designed for use with human urine only.
- A positive result with any of the tests indicates only the presence of a drug/metabolite and does not indicate or measure intoxication.
- There is a possibility that technical or procedural error as well other substances as factors not listed may interfere with the test and cause false results. See SPECIFICITY for lists of substances that will produce positive results, and those that do not interfere with test performance.
- If adulteration is suspected, the test should be repeated with new sample.

PERFORMANCE CHARACTERISTICS

A. Accuracy

The accuracy of the Status Assure Drug Screen Cup was evaluated in comparison to commercially available drug screen tests and GC/MS. Sixty (60) negative urine samples collected from presumed non-user volunteers were tested by both Status Assure Drug Screen Cup and commercially available drug screen tests. Of these negative urine samples tested, all were correctly identified as negative by both methods. In a separate study, positive urine samples, obtained from clinical laboratories where the drug concentrations were determined by GC/MS (HPLC for TCA), were tested by Status Assure Drug Screen Cup and commercial drug screen tests. The results of accuracy study are presented below:

<table>
<thead>
<tr>
<th>Drug Test</th>
<th>GC/MS (<50% C/O)</th>
<th>GC/MS (>50% C/O to 50% C/O)</th>
<th>GC/MS (>50% C/O)</th>
<th>% Agreement with GC/MS</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMP (+)</td>
<td>0</td>
<td>5</td>
<td>10</td>
<td>55</td>
</tr>
<tr>
<td></td>
<td>(+)</td>
<td>(+)</td>
<td>(+)</td>
<td>(+)</td>
</tr>
<tr>
<td>BAR (+)</td>
<td>0</td>
<td>1</td>
<td>5</td>
<td>83</td>
</tr>
<tr>
<td></td>
<td>(+)</td>
<td>(+)</td>
<td>(+)</td>
<td>(+)</td>
</tr>
<tr>
<td>BUP (+)</td>
<td>0</td>
<td>0</td>
<td>8</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>(+)</td>
<td>(+)</td>
<td>(+)</td>
<td>(+)</td>
</tr>
<tr>
<td>BZO (+)</td>
<td>0</td>
<td>2</td>
<td>13</td>
<td>37</td>
</tr>
<tr>
<td></td>
<td>(+)</td>
<td>(+)</td>
<td>(+)</td>
<td>(+)</td>
</tr>
<tr>
<td>COC150 (+)</td>
<td>0</td>
<td>1</td>
<td>7</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>(+)</td>
<td>(+)</td>
<td>(+)</td>
<td>(+)</td>
</tr>
<tr>
<td>COC300 (+)</td>
<td>0</td>
<td>0</td>
<td>8</td>
<td>71</td>
</tr>
<tr>
<td></td>
<td>(+)</td>
<td>(+)</td>
<td>(+)</td>
<td>(+)</td>
</tr>
<tr>
<td>MDMA (+)</td>
<td>0</td>
<td>1</td>
<td>6</td>
<td>37</td>
</tr>
<tr>
<td></td>
<td>(+)</td>
<td>(+)</td>
<td>(+)</td>
<td>(+)</td>
</tr>
<tr>
<td>MET500 (+)</td>
<td>0</td>
<td>2</td>
<td>8</td>
<td>64</td>
</tr>
<tr>
<td></td>
<td>(+)</td>
<td>(+)</td>
<td>(+)</td>
<td>(+)</td>
</tr>
</tbody>
</table>

MET1000 (+) 0 0 5 58 98.4
(-) 20 8 1 0 100
MTD (+) 0 0 6 65 98.6
(-) 15 5 1 0 100
OPI300 (+) 0 1 6 77 100
(-) 16 6 0 0 95.7
OPI2000 (+) 0 2 9 45 100
(-) 15 6 0 0 91.3
OXY (+) 0 2 6 47 100
(-) 15 6 0 0 91.3
PCP (+) 0 0 4 56 96.8
(-) 15 4 2 0 100
PPX (+) 0 0 6 64 98.6
(-) 10 7 1 0 100
TCA (+) 0 1 12 9 100
(-) 23 11 0 0 97.1
THC (+) 0 1 24 32 100
(-) 15 12 0 0 96.4

B. Precision

A study was conducted at three physician offices and Ameditech in an effort to determine the precision of the Status Assure Drug Screen Cup across three (3) consecutive days. Testing was conducted on the Amphetamines, Barbiturates, Benzodiazepines, Buprenorphine, Cocaine (300 and 150 assays), Marijuana, Methamphetamine (1000 and 500 assays), Methyleneoxyamphetamine, Methadone, Opiates (2000 and 300 assays), Oxycodone, Phencyclidine, Propoxyphene, and Tricyclic Antidepressants assays using three different lots of product to demonstrate the within-run, between-run and between-operator precision.

An identical panel of coded samples, containing drugs at specific concentrations around each assay cutoff was blinded and tested at each site. The correlation with expected results for the solutions targeted to +/- 50% of the cutoff was >99% across all lots, all sites and all operators.

C. Specificity

The specificity for the Status Assure Drug Screen Cup was determined by testing various drugs, drug metabolites, and other compounds that are likely to be present in urine. All compounds were prepared in drug-free normal human urine.

The following compounds produce positive results when tested at levels greater than the concentrations listed below:

<table>
<thead>
<tr>
<th>Compound</th>
<th>Conc. (ng/ml)</th>
<th>Compound</th>
<th>Conc. (ng/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amphetamine</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>d-Amphetamine</td>
<td>1,000</td>
<td>d-Methamphetamine</td>
<td>50,000</td>
</tr>
<tr>
<td>dl-Amphetamine</td>
<td>2,500</td>
<td>(+/-)3,4-MDA</td>
<td>50,000</td>
</tr>
<tr>
<td>(+/-)3,4-MDA</td>
<td>1,250</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Barbiturates</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Secobarbital</td>
<td>300</td>
<td>Butalbarbital</td>
<td>400</td>
</tr>
<tr>
<td>Allobarbital</td>
<td>600</td>
<td>Butalbital</td>
<td>300</td>
</tr>
<tr>
<td>Alphenal</td>
<td>200</td>
<td>Butalbital</td>
<td>450</td>
</tr>
<tr>
<td>Anobarbital</td>
<td>1500</td>
<td>Pentobarbital</td>
<td>400</td>
</tr>
<tr>
<td>Aprobartical</td>
<td>300</td>
<td>Phenobarbital</td>
<td>450</td>
</tr>
<tr>
<td>Barbital</td>
<td>1500</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Benzodiazepines</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oxazepam</td>
<td>300</td>
<td>Flunitrazepam</td>
<td>300</td>
</tr>
<tr>
<td>Alprazolam</td>
<td>400</td>
<td>Flurazepam</td>
<td>300</td>
</tr>
<tr>
<td>Bromazepam</td>
<td>250</td>
<td>Lorazepam</td>
<td>500</td>
</tr>
<tr>
<td>Chlordiazepoxide</td>
<td>300</td>
<td>Medazepam</td>
<td>300</td>
</tr>
<tr>
<td>Clobazam</td>
<td>1000</td>
<td>Nitrazepam</td>
<td>250</td>
</tr>
<tr>
<td>Clonazepam</td>
<td>500</td>
<td>Nordiazepam</td>
<td>150</td>
</tr>
<tr>
<td>Clorazepate</td>
<td>150</td>
<td>Prazepam</td>
<td>500</td>
</tr>
<tr>
<td>Desalkylflurazepam</td>
<td>300</td>
<td>Temazepam</td>
<td>200</td>
</tr>
<tr>
<td>Diazepam</td>
<td>450</td>
<td>Triazolam</td>
<td>450</td>
</tr>
<tr>
<td>Estazolam</td>
<td>300</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Buprenorphine</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Buprenorphine</td>
<td>10</td>
<td>Buprenorphine-3</td>
<td>7.5</td>
</tr>
<tr>
<td>Norbuprenorphine</td>
<td>2500</td>
<td>beta-D-glucuronide</td>
<td>7.5</td>
</tr>
<tr>
<td>Codeine</td>
<td>>100,000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Morphine</td>
<td>>100,000</td>
<td>Norbuprenorphine-3</td>
<td>150</td>
</tr>
<tr>
<td>Nalorphine</td>
<td>10,000</td>
<td>beta-D-glucuronide</td>
<td>150</td>
</tr>
</tbody>
</table>
Cocaine Metabolite

- Benzylecgonine 150
- Benzocaine 500
- Egonine methyl esters 100,000

Methamphetamine Metabolite

- d-Methamphetamine 500
- d-Morphine 100,000
- d-Amphetamine 100,000

MDMA

- (+/-)3,4-MDMA 500
- (+/-)3,4-MDEA 100,000

Methadone

- (+/-) Methadone 50

Morphine Metabolite

- Morphine 300
- Pseudoephedrine 450
- Codeine 200
- Codeine 150
- Ethylmorphine 100
- Hydrocodone 400

MDA

- (+/-)3,4-MDA 500
- (+/-)3,4-MDEA 450

Method

- (+/-) Methadone 300

Opiates

- Heroin 200
- Heroin 150

Ranges of specimen specific gravity do not interfere with the performance of the test.

Effect of specimen pH

No positive interference or negative interference was found for the following compounds when tested at concentrations up to 100 µg/ml.

BIBLIOGRAPHY OF SUGGESTED READING